下面我们以菱形继承为例来演示构造函数的调用:

#include 
using namespace std;

//虚基类A
class A{
public:
    A(int a);
protected:
    int m_a;
};
A::A(int a): m_a(a){ }

//直接派生类B
class B: virtual public A{
public:
    B(int a, int b);
public:
    void display();
protected:
    int m_b;
};
B::B(int a, int b): A(a), m_b(b){ }
void B::display(){
    cout<<"m_a="<

运行结果:
m_a=10, m_b=20
m_a=30, m_c=40
m_a=50, m_b=60, m_c=70, m_d=80

在最终派生类 D 的构造函数中,除了调用 B 和 C 的构造函数,还调用了 A 的构造函数。这说明 D 不但要负责初始化直接基类 B 和 C,还要负责初始化间接基类 A。而在以往的普通继承中,派生类的构造函数只负责初始化它的直接基类,再由直接基类的构造函数初始化间接基类,用户尝试调用间接基类的构造函数将导致错误。

现在采用了虚继承,虚基类 A 在最终派生类 D 中只保留了一份成员变量 m_a。如果由 B 和 C 初始化 m_a,那么 B 和 C 在调用 A 的构造函数时很有可能给出不同的实参。这个时候编译器就会犯迷糊,不知道使用哪个实参初始化 m_a。

为了避免出现这种矛盾的情况,C++ 干脆规定必须由最终的派生类 D 来初始化虚基类 A,直接派生类 B 和 C 对 A 的构造函数的调用是无效的。调用 B 的构造函数时试图将 m_a 初始化为 90,调用 C 的构造函数时试图将 m_a 初始化为 100,但是输出结果有力地证明了这些都是无效的,m_a 最终被初始化为 50,这正是在 D 中直接调用 A 的构造函数的结果。

另外需要关注的是构造函数的执行顺序。虚继承时构造函数的执行顺序与普通继承时不同:在最终派生类的构造函数调用列表中,不管各个构造函数出现的顺序如何,编译器总是先调用虚基类的构造函数,再按照出现的顺序调用其他的构造函数;而对于普通继承,就是按照构造函数出现的顺序依次调用的。

修改本例中第 50 行代码,改变构造函数出现的顺序:

D::D(int a, int b, int c, int d): B(90, b), C(100, c), A(a), m_d(d){ }

虽然我们将 A() 放在了最后,但是编译器仍然会先调用 A(),然后再调用 B()、C(),因为 A() 是虚基类的构造函数,比其他构造函数优先级高。如果没有使用虚继承的话,那么编译器将按照出现的顺序依次调用 B()、C()、A()。